

Based on AIATS-01

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

CONCEPT STRENGTHENING SHEET CSS-01 CHEMISTRY

AIATS-01 (CF + OYM), Q.60 Topic: Ideal Solutions

An ideal solution is made by mixing A and B. If vapour pressure of component A in the solution is 200 torr. Then molar ratio of A and B in vapour phase is

$$(P_A^{\circ} = 400 \text{ torr}, P_B^{\circ} = 100 \text{ torr})$$

(1) 1:1

(2) 2:1

(3) 1:4

(4) 4:1

Scan/Click

Solution

Underlying Concept

Practice Questions:

- The vapour pressure of two liquids P and Q are 80 torr and 60 torr respectively. The total vapour pressure obtained by mixing 1 mole of P and 4 moles of Q would be
 - (1) 140 torr
- (2) 64 torr
- (3) 76 torr
- (4) 80 torr
- 2. Two components A and B form an ideal solution. The mole fractions of A and B in ideal solution are xA and xB, while the vapour pressure of A and B component in pure state are P_A° and P_B° respectively. Mole fraction of component A in vapour phase (y_A) is

$$(1) \ \frac{P_A^{\circ} X_A}{P_A^{\circ} X_A + P_B^{\circ} X_B}$$

(1)
$$\frac{P_A^{\circ} X_A}{P_A^{\circ} X_A + P_B^{\circ} X_B}$$
 (2) $\frac{P_A^{\circ}}{P_A^{\circ} X_A + P_B^{\circ} X_B}$

$$(3) \quad \frac{P_B^{\circ} X_A}{P_A^{\circ} X_A + P_B^{\circ} X_B}$$

(3)
$$\frac{P_{B}^{\circ}X_{A}}{P_{A}^{\circ}X_{A} + P_{B}^{\circ}X_{B}}$$
 (4) $\frac{P_{A}^{\circ}X_{B}}{P_{A}^{\circ}X_{A} + P_{B}^{\circ}X_{B}}$

Equal moles of A and B are mixed and the 3. vapour pressure of A and B in pure state are 500 and 300 mm Hg respectively. The mole fraction of A in vapour state is

(1) 0.52

(2) 0.32

(3) 0.47

(4) 0.62

An Ideal solution is made by mixing X and Y. If vapour pressure of component X in the solution is 100 torr, then mole fraction of Y in vapour phase is

$$(P_x^{\circ} = 300 \text{ torr}, P_Y^{\circ} = 150 \text{ torr})$$

(1) 0.5

(2) 0.4

(3) 0.3

(4) 0.8

AIATS-01 (CF + OYM), Q.69 **Topic: Product of Electrolysis**

On electrolysis of aqueous solution of AgNO₃ using silver electrodes, the product obtained at anode will be

(1) O₂

(2) Ag+

(3) Ag

(4) NO₂

Scan/Click

Solution

Underlying Concept

Practice Questions:

- 1. When dilute HNO₃ is electrolysed
 - (1) O₂ gas is formed at anode
 - (2) H₂ gas is formed at anode
 - (3) NO₂ is formed at anode
 - (4) N₂ gas is formed at anode
- 2. On electrolysis of aqueous solution of NaCl using platinum electrodes, the product obtained at cathode will be
 - (1) $O_2(g)$
- (2) $H_2(g)$
- (3) $Cl_2(g)$
- (4) Na(s)

CSS-01 Chemistry

- The number of Faradays required to deposit 27 g of aluminium (Atomic weight of Al. 27) from molten AlCl₃
 - (1) IF
- (2) 2F
- (3) 3F
- (4) 4F
- 4. Electrolysis of molten anhydrous calcium chloride produce
 - (1) H₂(g) at cathode
- (2) Cl₂(g) at cathode
- (3) Ca(s) at anode
- (4) Ca(s) at cathode

AIATS-01 (CF + OYM), Q.67 Topic: Elevation Boiling Point

Maximum value of ebullioscopic constant is for

- (1) 0.1 M aq CH₃COOH
- (2) 0.2 M aq urea
- (3) 0.1 M aq NaCl
- (4) All have same values

Scan/Click

Solution

Underlying Concept

Practice Questions:

- 1. Value of ebullioscopic constant depends upon
 - (1) ∆H_{solution}
 - (2) Nature of solvent
 - (3) Nature of solute
 - (4) Freezing point of solution
- 2. Minimum value of ebullioscopic constant is for
 - (1) 0.1 M aq CH₃COOH
 - (2) 0.2 M ag urea
 - (3) 0.1 M aq NaCl
 - (4) All have same values
- 3. At higher altitude, the boiling point of water is lowered because
 - (1) Atmospheric pressure is low
 - (2) Temperature is low
 - (3) Atmospheric pressure increases
 - (4) Water solidifies to ice

AIATS-01 (CF + OYM), Q.76

Topic: Variation of Molar Conductivity with Concentration

Statement I: Molar conductivity increases slowly on dilution for strong electrolyte.

Statement II: Conductivity decreases on dilution for weak electrolyte.

In the light of above statements, choose the correct option below.

- Statement I is correct and statement II is incorrect
- (2) Statement I is incorrect and statement II is correct

- (3) Both statement I and statement II are correct
- (4) Both statement I and statement II are incorrect

Scan/Click

Solution

Underlying Concept

Practice Questions:

- 1. Limiting molar conductivity of CH₃COOH $\left(\Lambda_m^0(\text{CH}_3\text{COOH})\right)$ is equal to
 - (1) $\Lambda_{\rm m}^0 \left({\rm CH_3COONa} \right) + \Lambda_{\rm m}^0 \left({\rm HCI} \right) \Lambda_{\rm m}^0 {\rm NaCI}$
 - (2) $\Lambda_{m}^{0} \left(CH_{3}COONa \right) + \Lambda_{m}^{0} \left(NaCl \right) \Lambda_{m}^{0} \left(HCl \right)$
 - (3) $\Lambda_{\rm m}^0 \left({\rm HCI} \right) + \Lambda_{\rm m}^0 \left({\rm NaCI} \right) \Lambda_{\rm m}^0 \left({\rm CH_3COONa} \right)$
 - (4) $\Lambda_{\rm m}^0$ (NaOH) + $\Lambda_{\rm m}^0$ (CH₃COOH) $\Lambda_{\rm m}^0$ (NaCl)
- The conductivity of 0.1 M solution of KCl at 298 K is 0.025 Scm⁻¹. What would be its molar conductivity?
 - (1) 25 Scm² mol⁻¹
- (2) 250 Scm2 mol-1
- (3) 2.5 Scm² mol⁻¹
- (4) 0.25 scm² mol⁻¹
- 3. Which of the following is not correct?
 - (1) Molar conductance of a solution increase with dilution
 - (2) Equivalent conductance increases with dilution
 - (3) Conductivity increases with dilution
 - (4) At infinite dilution each ion plays a definite role towards electrical conductance

AIATS-01 (CF + OYM), Q.57 Topic: Properties of Solid

Statement I: Ferrimagnetic substance becomes paramagnetic on heating.

Statement II: Diamagnetic substances are weakly magnetised in a magnetic field in opposite direction.

In the light of above statements choose the **correct** option.

- (1) Statement I is correct and statement II is incorrect
- (2) Statement I is incorrect and statement II is correct
- (3) Both statement I and statement II are correct
- (4) Both statement I and statement II are incorrect

Scan/Click

Solution

Underlying Concept

CSS-01 Chemistry

Practice Questions:

- Which alignment of magnetic moment shows ferrimagnetism?
 - (1) $\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow$
 - (2) $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$
 - (3) ↑↓ ↑↓↑↓
 - (4) ↓↓ ↓↓ ↓↓
- 2. Which among the following is antiferromagnetism compound?
 - (1) Fe₃O₄
- (2) MnO
- (3) MgFe₂O₄
- (4) NaCl
- 3. Substances which are weakly repelled by magnetic field are known as
 - (1) Paramagnetic
 - (2) Diamagnetic
 - (3) Ferromagnetic
 - (4) Antiferromagnetic
- 4. Unit of magnetic moment is
 - (1) Debye
 - (2) Coulomb
 - (3) Bohr magneton
 - (4) Candela

AIATS-01 (CF + OYM), Q.59

Topic: Depression of Freezing Point

The following solutions were prepared by dissolving 10 g of urea in 250 g of water (P_1), 10 g of NaCl in 250 g of water (P_2) and 10 g of glucose in 250 g of water (P_3). The right option for decreasing order of freezing point of these solutions is

- (1) $P_3 > P_1 > P_2$
- (2) $P_2 > P_1 > P_3$
- (3) $P_1 > P_2 > P_3$
- (4) $P_2 > P_3 > P_1$

Scan/Click

Solution

Underlying Concep

Practice Questions:

- 1. Which among the following aqueous solutions have (Assuming 100% ionisation) lowest freezing point?
 - (1) 0.1 m urea
- (2) 0.1 m NaCl
- (3) 0.1 m glucose
- (4) 0.1 m CaCl₂
- 2. Molal depression constant depends on
 - (1) Concentration of solute
 - (2) Temperature
 - (3) Nature of solute
 - (4) Nature of solvent

- 3. Freezing point of an aqueous solution containing 0.02 mole urea dissolved in 100 g of water is (k_f for H₂O is 1.86 k kg mol⁻¹)
 - (1) 0.372°C
 - (2) 1.86° C
 - (3) 1.86°C
 - (4) 3.72°C

AIATS-01 (CF + OYM), Q.61 Topic: Ideal and Non-Ideal Solution

The mixture which shows negative deviation from Raoult's law is

- (1) Benzene + Toluene
- (2) Chloroethane + Bromoethane
- (3) Acetone + Chloroform
- (4) Carbon disulphide + Acetone

Scan/Click

Solution

Underlying Concept

Practice Questions:

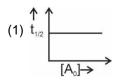
- 1. Which among the following mixture shows negative deviation from Raoult's law?
 - (1) Benzene + Toluene
 - (2) Ethanol + Water
 - (3) Acetone + Chloroform
 - (4) Benzene + Acetone
- Which among the following is incorrect regarding the solution showing positive deviation from Raoult's law?
 - (1) $\Delta H_{mix} > 0$
- (2) $\Delta S_{mix} > 0$
- (3) $\Delta G_{mix} > 0$
- (4) $\Delta V_{mix} > 0$
- 3. On mixing 10 ml of n-hexane and 20 ml of n-heptane, the total volume of solution is
 - (1) 30 ml
- (2) 30.5 ml
- (3) 29.0 ml
- (4) 31.0 ml

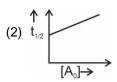
AIATS-01 (CF + OYM), Q.79 Topic: Order of Reaction

When initial concentration of the reactant is doubled, the half-life period of a first order reaction

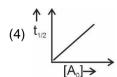
- (1) is halved
- (2) is doubled
- (3) becomes one fourth
- (4) remains unchanged

Scan/Click




Solution


Underlying Concept


- 1. $t_{1/2}$ for a first order reaction is 10 minutes $t_{75}\%$ for the reaction is
 - (1) 20 minutes
- (2) 10 minutes
- (3) 50 minutes
- (4) 100 minutes
- On doubling the initial concentration of reaction, half life of a reaction also doubles. The order of reaction is
 - (1) Zero order
- (2) First order
- (3) Second order
- (4) Third order
- 3. The rate constant of a reaction is 0.0693 s^{-1} . Half life of the reaction is

- (1) 6.93 seconds
- (2) 10 seconds
- (3) 0.693 seconds
- (4) 20 seconds
- 4. Correct graph for the first order reaction is

CSS-01 Chemistry

Based on AIATS-01 CF + OYM

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

CONCEPT STRENGTHENING SHEET CSS-OI(CHEMISTRY) Answer Key

AIATS-01 (CF + OYM), Q.60	AIATS-01 (CF + OYM), Q.57
Topic: Ideal Solutions	Topic: Properties of Solid
1. (2)	1. (1)
2. (1)	2. (2)
3. (4) 4. (1)	3. (2)
AIATS-01 (CF + OYM), Q.69	4. (3)
Topic: Product of Electrolysis	AIATS-01 (CF + OYM), Q.59
1. (1)	Topic: Depression in Freezing Point
2. (2)	1. (4)
3. (3)	2. (4)
4. (4)	3. (1)
AIATS-01 (CF + OYM), Q.67	
Topic: Elevation of Boiling Point	AIATS-01 (CF + OYM), Q.61
1. (2)	Topic: Ideal and Non-Ideal Solution
2. (4)	1. (3)
3. (1)	2. (3)
AIATS-01 (CF + OYM), Q.76	3. (1)
Topic: Variation of Molar Conductivity with	AIATS-01 (CF + OYM), Q.79
Concentration	Topic: Order of Reaction
1. (1)	1. (1)
2. (2)	2. (1)
3. (3)	3. (2)
	4. (1)