

Corporate. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

CONCEPT STRENGTHENING SHEET CSS-01 PHYSICS

AIATS 01 - CF+OYM - Q.No.-31

Topic: Temperature Dependence of Resistivity

- 31. The material whose resistivity is less sensitive to temperature is
 - (1) Silicon
- (2) Copper
- (3) Silver
- (4) Nichrome

Scan/Click

Underlying Concept

- Consider the following statements and choose the correct option
 - (I) Manganin is a material whose resistivity is less sensitive to temperature.
 - (II) In general, sillicon have less dependence on temperature
 - (1) Only (I) is correct
 - (2) Only (II) is correct
 - (3) Both (I) and (II) are correct
 - (4) Both (I) and (II) are incorrect
- 2. Which of the following statements is correct?
 - (1) Conductivity of metals decreases with increase in temperature
 - (2) Conductivity of semiconductor increases with increase in temperature
 - (3) Conductivity of insulators increases slightly with increase in temperature
 - (4) All of these

- 3. Which of the following material is an alloy?
 - (1) Nichrome
- (2) Copper
- (3) Mercury
- (4) Silicon
- 4. Variation of resistivity (ρ) with temperature (θ) for alloys like Nichrome and manganin is best represented by

AIATS 01 - CF+OYM - Q.No.-5

Topic: Gauss's Law

- 5. A solid spherical conductor of radius R has a spherical cavity of radius a (a < R) at its centre. A charge +Q is kept at the centre. The charge inside a gaussian surface of radius r (a < r < R) will be
 - (1) Zero
- (2) -Q
- (3) + Q
- (4) $\frac{+Q}{2}$

Scan/Click

Solution

Underlying Concept

 A solid spherical conductor of radius R has a concentric spherical cavity of radius a (a < R). A charge +Q is kept at the centre. Based upon the above information choose the option with most appropriate distribution of induced charges.

- 2. A solid spherical conductor of radius R has a concentric spherical cavity of radius a (a < R). A charge +Q is kept at the centre. The electric flux through the Gaussian surface of radius r (a < r < R) is
 - (1) Zero
- (2) $\frac{Q}{2\varepsilon_0}$
- (3) $\frac{Q}{\varepsilon_0}$
- $(4) \quad \frac{Q}{4\varepsilon_0}$
- A solid spherical conductor of radius R has a concentric spherical cavity of radius a (a < R). A charge +Q is placed inside the spherical cavity. The charge distribution on inner surface of cavity is
 - (1) Uniform
- (2) Non-uniform
- (3) May be (1) or (2)
- (4) No charge appears
- 4. A solid spherical conductor of radius R has a concentric spherical cavity of radius a(a < R). A charge +Q is kept at the centre. The charge inside a Gaussian surface of radius r is (where r = 2R)</p>
 - (1) + Q
- (2) G
- (3) Zero
- (4) $+\frac{Q}{2}$

AIATS 01 - CF+OYM - Q.No.-26

Topic: Combination of Resistors - Series and Parallel

- 26. Two metal wires of identical dimensions are connected in series. If σ and 2σ are the conductivities of the metal wire respectively, the effective conductivity of the combination is
 - (1) $\frac{4\sigma}{3}$
- $(2) \quad \frac{2\sigma}{3}$
- (3) $\frac{\sigma}{3}$

(4) 3_o

Scan/Click

- 1. Two metal wires of identical dimensions are connected in parallel. If σ & 3σ are the conductivities of the metal wire respectively, the effective conductivity of combination is
 - (1) σ

- (2) 4σ
- (3) 8σ
- (4) 2σ
- 2. If two wires identical in dimensions are connected in parallel having ρ & 2ρ as resistivities respectively, then effective resistivity of combination is
 - (1) $\frac{\rho}{2}$
- (2) $\frac{\rho}{4}$

(3) $\frac{\rho}{3}$

- (4) $\frac{4\rho}{3}$
- 3. Two metal wires of identical dimensions are connected in series. If σ and 4σ are the conductivities of the metal wire respectively, the ratio of effective resistance to resistance of wire with conductivity 4σ is
 - (1) 5:1
- (2) 2:5
- (3) 3:7
- (4) 3:5
- 4. If the resistivity of two wires identical in dimensions are ρ and 3ρ respectively are connected in series. The effective resistivity of combination, is
 - (1) 2ρ
- (2) 4ρ
- (2) 5ρ
- (4) 3ρ

AIATS 01 - CF+OYM - Q.No.-3

Topic: Electric Field Due to a System of Charges

- A point charge is brought in an electric field. The electric field at a nearby point
 - (1) Will increase if the charge is positive
 - (2) Will decrease if the charge is negative
 - (3) May increase if the charge is positive
 - (4) Will remains same

Scan/Click

- A positive point charge is brought in an electric field induced due to a negative charge. The electric field at a nearby point
 - (1) Will increase
 - (2) Will decrease
 - (3) May increase or decrease
 - (4) Remains constant
- 2. A positive point charge is brought in an electric field induced due to a positive charge. The electric field at a nearby point
 - (1) Will increase
 - (2) Will decrease
 - (3) May increase or decrease
 - (4) Remains constant
- 3. A positive point charge is brought is an electric field. The electric field at any point
 - (1) Must increase
 - (2) May increase or decrease
 - (3) Must decrease
 - (4) Remains same

AIATS 01 - CF+OYM - Q.No.-13

Topic: Capacitors and Capacitance

13. Two concentric conducting spherical shells having radii *a* and 2*a* respectively are arranged as shown in the figure

Capacitance of this system is

- (1) $4\pi\epsilon_0 a$
- (2) $2\pi\varepsilon_0 a$
- (3) $8\pi\epsilon_0 a$
- (4) Zero

Scan/Click

Underlying Concept

 Two concentric conducting spherical shells having radii b and 3b respectively are arranged as shown in the figure. Capacitance of this system is

- (1) 4 πεοb
- (2) 6πεοb
- (3) $2\pi\varepsilon_0 b$
- (4) $8\pi\varepsilon_0 b$
- When inner sphere is grounded for a system of two concentric conducting spherical shells having radii a and 2a shown in figure then capacitance of system is

- (1) 16 πε₀a
- (2) $2\pi\varepsilon_0 a$
- (3) $4\pi\epsilon_0 a$
- (4) 7πε₀a
- Two concentric conducting spherical shells of inner radius 2 mm and outer radius 4 mm are arranged as shown in figure. The value of potential for inner sphere is

- (1) $2.25 \times 10^{-6} \text{ V}$
- $(2) 4.5 \times 10^6 \text{ V}$
- (3) $2.25 \times 10^6 \text{ V}$
- $(4) 4.5 \times 10^{-6} \text{ V}$

4. The capacitance of spherical capacitor whose inner sphere is earthed is 0.4 μF . If separation between inner and outer sphere is 2 mm, then the outer radius is

- (1) 0.26 m
- (2) 2.68 m
- (3) 0.34 mm
- (4) 3.4 m

AIATS 01 - CF+OYM - Q.No.-33

Topic: Current Density and Electric Field

- 33. The amount of charge flowing per second per unit area normal to flow, is called
 - (1) Electrical conductivity
 - (2) Current density
 - (3) Electrical resistivity
 - (4) Mobility

Scan/Click

Solution

Underlying Concept

 If I is electric current crossing normally through an area A, then current density will be

- (1) $\frac{I^2}{A}$
- (2) *IA*
- (3) PA
- $(4) \frac{I}{A}$
- Consider the following statements and choose the correct option
 - Electron mobility of electrons inside a conductor is defined as drift speed acquired per unit applied electric field.
 - II. Current density is the ratio of drift speed of electrons and area of cross section of the conductor.
 - (1) Only (I) is correct
 - (2) Only (II) is correct
 - (3) Both (I) and (II) are correct
 - (4) Both (I) and (II) are incorrect
- Choose the correct expression (symbols have their usual meanings)
 - (1) Electron mobility = $\frac{E}{v_d}$
 - (2) Current density = $\frac{A}{I}$
 - (3) Electrical conductivity = $\frac{j}{F}$
 - (4) Electric current = $\frac{q}{At}$

CSS-01 Physics

CF + OYM

(1)

Based on AIATS-01

Corporate. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

CONCEPT STRENGTHENING SHEET CSS-01 PHYSICS

AIATS 01 - CF+OYM - Q.No31		AIATS 01 - CF+OYM - Q.No3	
Topic: Temperature Dependence of Resistivity		Topic: Electric Field Due to a System of Charges	
1.	(1)	1.	(3)
2.	(4)	2.	(3)
3.	(1)	3.	(2)
4.	(2)	AIA	TS 01 - CF+OYM - Q.No13
AIATS 01 - CF+OYM - Q.No5		Тор	ic: Capacitors and Capacitance
Topic: Gauss's Law		1.	(2)
1.	(2)	2.	(1)
2.	(1)	3.	(2)
3.	(3)	4.	(2)
4.	(1)	AIA	TS 01 - CF+OYM - Q.No33
AIATS 01 - CF+OYM - Q.No26		Тор	ic: Current Density and Electric Field
Тор	ic: Combination of Resistors - Series and Parallel	1.	(4)
1.	(4)	2.	(1)
2.	(4)	3.	(3)
3.	(1)		