

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Phone: 011-47623456

REVISION TEST SERIES

Time: 3.00 Hrs.

(for NEET-2022)

Test - 2

## Topics covered:

Physics: Current Electricity

Chemistry: Alcohols, Phenols and Ethers

**Botany**: Principles of Inheritance and Variations

Zoology: Reproductive Health

## Instructions:

MM: 720

- (i) There are two sections in each subject, i.e. Section-A & Section-B. You have to attempt all 35 questions from Section-A & only 10 questions from Section-B out of 15.
- (ii) Each question carries 4 marks. For every wrong response 1 mark shall be deducted from the total score. Unanswered / unattempted questions will be given no marks.
- (iii) Use blue/black ballpoint pen only to darken the appropriate circle.
- (iv) Mark should be dark and completely fill the circle.
- (v) Dark only one circle for each entry.
- (vi) Dark the circle in the space provided only.
- (vii) Rough work must not be done on the Answer sheet and do not use white-fluid or any other rubbing material on the Answer sheet.

# **PHYSICS**

### Choose the correct answer:

### **SECTION-A**

The current (I) voltage (V) graphs for a given ohmic conductor at two different temperatures T<sub>1</sub> and T<sub>2</sub> are shown in the figure. Choose the correct statement. (R<sub>1</sub> and R<sub>2</sub> are the resistance of specimen at temperature T<sub>1</sub> and T<sub>2</sub> respectively)



- (1)  $R_1 > R_2$
- (2)  $R_2 > R_1$
- (3)  $T_1 = T_2$
- (4)  $T_2 < T_1$

2. Charge stored on the capacitor of capacitance 10  $\mu F$  connected in the circuit as shown in figure, in steady state is



- (1) 20 μC
- (2) 15 μC
- (3) 10 μC
- (4) Zero
- A circuit consists of a source of emf E and internal resistance r, capacitors each of capacitance C and resistors each of resistance R. Potential drop across any of the capacitor at steady state is



- $(1) \frac{ER}{2(R+r)}$
- (2)  $\frac{ER}{R+r}$
- $(3) \quad \frac{E(R+r)}{2R}$
- (4) Zero
- 4. The drift velocity of the electrons in a copper wire of length 2 m under the application of a potential difference 100 V is 0.025 m/s. The mobility of electron (in m<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>) is
  - (1)  $5 \times 10^2$
- (2)  $2.5 \times 10^{-3}$
- (3)  $5 \times 10^{-4}$
- (4)  $2.5 \times 10^{-2}$
- 5. A wire with uniform cross-section and resistance 4  $\Omega$  is bent to form a circle as shown in the figure. The resistance between A and B is



- (1)  $\frac{5}{9} \Omega$
- (2)  $4 \Omega$
- (3)  $\frac{9}{5}\Omega$
- (4)  $\frac{2}{3}$

6. Six equal resistances are connected between points *P*, *Q* and *R* as shown in figure. The net resistance will be maximum across the points



- (1) P and Q
- (2) Q and R
- (3) P and R
- (4) Between any two points are equal
- 7. In the circuit element given here, If the potential at point *B* is zero, then potential of points *A* and *D* can be given as

- (1)  $V_A = -1.5 \text{ V}, V_D = +2 \text{ V}$
- (2)  $V_A = +1.5 \text{ V}, V_D = +2 \text{ V}$
- (3)  $V_A = + 1.5 \text{ V}, V_D = +0.5 \text{ V}$
- (4)  $V_A = +1.5 \text{ V}, V_D = -0.5 \text{ V}$
- 8. If the switch S is closed in the circuit shown in figure, how much current will pass through it?



- (1) 4.5 A
- (2) 6.0 A
- (3) 3.0 A
- (4) Zero
- 9. In the circuit shown in figure, if voltage drop across any of 2  $\Omega$  resistance is 2 V, then emf of the cell is



- (1) 25 V
- (2) 27 V
- (3) 13 V
- (4) 30 V

 The value of unknown resistance for null deflection in galvanometer, as shown in meter bridge circuit is



- (1) 220  $\Omega$
- (2)  $110 \Omega$
- (3)  $55 \Omega$
- (4)  $13.75 \Omega$
- 11. In the part of circuit shown in the figure, the potential difference between points G and H  $(V_G V_H)$  is



- (1) 0 V
- (2) 15 V
- (3) 7 V
- (4) 3 V
- 12. All the resistors in given circuit have same resistance and equivalent resistance between *A* and *B* is *R*<sub>0</sub>. Now keys are closed, then equivalent resistance can be expressed as



- (1)  $\frac{7R_0}{3}$
- (2)  $\frac{7R_0}{9}$
- (3) 7R<sub>0</sub>
- (4)  $\frac{R_0}{3}$

- On increasing the temperature, the resistivity of the material
  - (1) Always increases
  - (2) Always decreases
  - (3) May increase or decrease
  - (4) Remains same
- 14. In the circuit shown in figure if power dissipated in the 9  $\Omega$  resistor is 36 W, then potential difference across 2  $\Omega$  resistor is



- (1) 5 V
- (2) 10 V
- (3) 18 V
- (4) 20 V
- 15. The charge passing through a resistor is varying with time as shown in the graph. The amount of heat generated with time *t* is best represented as



16. Variation of square of current  $\hat{r}$  with time t is plotted in the graph shown in figure for a resistor of resistance 10  $\Omega$ . Total heat produced in the resistance in time 6 s is



- (1) 80 J
- (2) 240 J
- (3) 160 J
- (4) 320 J
- 17. In the circuit shown in figure, the resistance of voltmeter is 6 k $\Omega$ . The voltmeter reading will be



- (1) 6 V
- (2) 5 V
- (3) 4 V
- (4) 3 V
- 18. The value of *R* for which power across *AB* is maximum



- (1)  $6\Omega$
- (2)  $9\Omega$
- (3)  $12 \Omega$
- (4)  $3\Omega$
- 19. A 4 V battery with negligible internal resistance is connected across a uniform wire AB of length 2 m. A battery of emf 2 V and internal resistance 2  $\Omega$  is joined as shown in figure. If galvanometer shows no deflection, then



- (1) xy > 110 cm
- (2) xy < 100 cm
- (3) xy = 100 cm
- (4) xy = 110 cm

20. Consider an infinite ladder network as shown in the figure. The effective value of resistance between point *A* and *B* is



(1) 4R

(2) R

(3) 2R

- (4) 8R
- 21. Within electric cell, the charge is transported by
  - (1) Free electrons
  - (2) Only positive ions
  - (3) Only negative ions
  - (4) Both positive and negative ions
- 22. As shown in figure, two bulbs each 100 W, 220 V connected in series. The heat generated per second when connected in series across 400 V supply is approximately



- (1) 50 W
- (2) 100 W
- (3) 200 W
- (4) 165 W
- 23. The charge flowing through a resistance of 10  $\Omega$  varies with time t as  $Q = 6t 3\ell$ . The total heat produced is
  - (1) 60 J
- (2) 90 J
- (3) 30 J
- (4) 120 J
- 24. A resistance 3R of thermal coefficient of resistivity  $\alpha$  is connected in parallel with a resistance 6R having thermal coefficient  $2\alpha$ , the equivalent thermal coefficient of resistivity is
  - **(1)** 3α

(2)  $\frac{4\alpha}{3}$ 

(3)  $\frac{30}{2}$ 

 $(4) \quad \frac{5\alpha}{4}$ 

25. The reading of ammeter in the circuit shown in the figure is



- (1) Zero
- $(2) \quad \frac{2V}{3R}$
- $(3) \ \frac{V}{3R}$
- $(4) \quad \frac{V}{2R}$
- 26. The charge on the capacitor in the circuit, as shown in the figure, in steady state is



- (1) 4 μC
- (2) 5 μC
- (3)  $2 \mu C$
- (4) 1 μC
- 27. Current (i) through a conductor depends on time (t) as i = (5t) A. If the resistance of the conductor is  $2\Omega$ , then the heat dissipated by the conductor in time duration t = 2 s to t = 4 s is approximately
  - (1) 812 J
- (2) 16 J
- (3) 1500 J
- (4) 933 J
- 28. The equivalent resistance between *A* and *B* in the following circuit is



- (1) 20  $\Omega$
- (2) 3.6  $\Omega$
- (3) 4  $\Omega$
- (4) 1.2  $\Omega$

29. The value of current *i* as shown in the following circuit is



- (1) 4 A
- (2) 2 A
- (3) Zero
- (4) 8 A
- 30. Five identical cells each of internal resistance 0.4  $\Omega$  and emf 4 V are connected in series (in support of each other) with an external resistance  $2\,\Omega$ . The current through the external resistance is
  - (1) 2 A
- (2) 10 A
- (3) 5 A
- (4) 4 A
- 31. Consider the following circuit diagram involving a potentiometer. The potential gradient across the potentiometer wire is 2 V/m. Calculate the distance AJ, for which the ammeter shows zero deflection.



- (1) 0.25 m
- (2) 0.5 m
- (3) 1 m
- (4) None of the above
- 32. Which of the following graphs best represents the variation of terminal potential difference across a cell as function of current through it, in case of charging?



33. Three identical bulbs are connected in a circuit as shown in figure. Rank the bulbs in decreasing order of brightness.



- (1)  $B_1 > B_2 > B_3$
- (2)  $B_2 > B_1 > B_3$
- (3)  $B_1 > B_2 = B_3$
- (4)  $B_2 = B_3 > B_1$
- 34. A battery of emf 10 V is connected to resistances as shown in the figure. The potential difference between points A and B is



- (1) 5 V
- (2) 3 V
- (3) 6 V
- (4) Zero
- 35. For a conductor of constant volume, the graph between resistance and length of the conductor is
  - (1) Parabola
- (2) Hyperbola
- (3) Ellipse
- (4) Straight line

## **SECTION-B**

36. The potential difference between points P and Q in the circuit shown in the figure is



- (3) 6 V

- (4) 8 V
- 37. In the given circuit, the value of resistance of resistor R is



- (1) 18  $\Omega$
- (2) 6  $\Omega$
- (3) 12  $\Omega$
- (4) 24  $\Omega$
- 38. Two bulbs A and B are respectively rated as (25 W - 220 V) and (100 W - 220 V). The ratio of resistance of bulb A to that of bulb B i.e.  $R_A$ :  $R_B$  is
  - (1) 1:4
- (2) 4:1
- (3) 16:1
- (4) 1:16
- 39. The current through the load resistance R in the circuit as shown in the figure is



- (2)  $\frac{30}{7}$  A
- (3)  $\frac{6}{93}$  A
- (4)  $\frac{7}{20}$  A
- 40. The relaxation time of electrons in conductors
  - (1) Decrease with decrease in temperature
  - (2) Decrease with increase in temperature
  - (3) Is independent of temperature
  - (4) First increase then decrease with increase in temperature
- 41. In a neutral wire carrying electric current density  $\vec{J}$  is given by ( $\rho$  is negative charge density,  $\vec{v}$ is drift velocity)

  - (1)  $\vec{J} = \rho_{\vec{v}}$  (2)  $\vec{J} = \frac{\vec{v}}{\rho}$
  - $(3) \quad \vec{J} = \frac{\rho_{-}}{\vec{J}}$
- (4) Both (2) and (3)
- 42. Equivalent resistivity of two wires of equal radii and of resistivities  $\rho_1$  and  $\rho_2$  and length  $l_1$  and  $l_2$ respectively joined in series, is

  - (1)  $\frac{\rho_1 l_1 + \rho_2 l_2}{l_1 + l_2}$  (2)  $\frac{\rho_1 l_2 + \rho_2 l_1}{l_1 l_2}$
  - (3)  $\frac{\rho_1 I_2 + \rho_2 I_1}{I_1 + I_2}$
- (4)  $\frac{\rho_1 I_1 \rho_2 I_2}{I_4 I_2}$

43. Figure shows a 2.0 V cell connected in a potentiometer used for determination of internal resistance of 1.5 V cell. The balance point of the cell in open circuit is 76.0 cm. When a resistor of 9.0  $\Omega$  is used in the external circuit of the cell, the balance point shifts to 72.0 cm length of potentiometer wire. The internal resistance of the cell is



- (1)  $0.2 \Omega$
- (2)  $0.3~\Omega$
- (3)  $1.7 \Omega$
- (4)  $0.5 \Omega$
- 44. A cell has an emf of 4 V and internal resistance  $0.6\,\Omega$ . The maximum power which it can deliver to any external resistor is
  - (1) 2.86 W
- (2) 6.67 W
- (3) 4.87 W
- (4) 4.13 W
- 45. A galvanometer of resistance  $G=50\,\Omega$  is connected to a battery 3 V along a resistance of  $2950\,\Omega$  in series. A full scale deflection of 30 divisions is obtained in the galvanometer. In order to reduce this deflection to 20 divisions, the resistance R that should be connected in series with G will be
  - (1)  $4450 \Omega$
- (2)  $5050 \Omega$
- (3)  $5550 \Omega$
- (4)  $6050 \Omega$
- 46. Value of current i in the following circuit is



- (1)  $\frac{4}{43}$ A
- (2) 16 A
- (3)  $\frac{6}{91}$ A
- (4)  $\frac{40}{19}$  A

- 47. Mobility of free electrons in a conductor, in presence of external electric field E is μ. If the external electric field changed to 2E, then mobility will be
  - (1)  $2\mu$

(2) µ

(3)  $3 \mu$ 

- $(4) \frac{\mu}{2}$
- 48. A cell of emf *E* and internal resistance *r* is connected in series with an external resistance *nr*. The terminal potential difference across the cell will be
  - (1)  $\frac{E}{n+1}$
- (2)  $\frac{E}{n}$
- $(3) \frac{(n+1)E}{n}$
- (4)  $\left(\frac{n}{n+1}\right)E$
- 49. The equivalent resistance between points *A* and *B* in the infinite ladder circuit is



- (1)  $\frac{\sqrt{5}+1}{2}\Omega$
- (2)  $\frac{\sqrt{5}-1}{2}\Omega$
- (3) 3 Ω
- (4) √5 Ω
- 50. Effective temperature coefficient of series combination of two resistors with respective temperature coefficient of resistance  $\alpha_1$  and  $\alpha_2$  is (The resistance of two conductors at 0°C is same)
  - (1)  $2(\alpha_1 + \alpha_2)$
  - $(2) \quad \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$
  - $(3) \quad \frac{\alpha_1 \alpha_2}{2}$
  - $(4) \quad \frac{\alpha_1 + \alpha_2}{2}$

# **CHEMISTRY**

## **SECTION-A**

- 51. Epoxyethane reacts with ethylmagnesium bromide, followed by hydrolysis, the compound formed is
  - (1) Isopropyl alcohol
- (2) n-butyl alcohol
- (3) Tert butyl alcohol
- (4) n-propyl alcohol

52. 
$$+ Br_2 \xrightarrow{Fe}$$
 ? (Major product)

Major product is



53. 
$$+ CH_3OH \xrightarrow{H^*} A$$
 .(A) is



- 54. When C<sub>2</sub>H<sub>5</sub>MgI is made to react with acetone and the addition product is hydrolysed, we get
  - (1) A primary alcohol
  - (2) A secondary alcohol
  - (3) A tertiary alcohol
  - (4) An ether
- 55. Which among the following is resorcinol?



56. Which of the reactants given below is/are suitable for the preparation of 1-methoxy-2-nitrobenzene?

$$x: NO_2 \longrightarrow NO_2 \\ - Br + CH_3ONa \\ NO_2$$

y: 
$$NO_2$$
 ONa +  $CH_3Br$ 

- (1) Only x
- (2) Only y
- (3) Both x and y
- (4) Neither x nor y
- 57. Most acidic compound among the following is



58. Which of the following will be dehydrated most easily in acidic medium?

Choose the incorrect match.

(1) : 4-Methylcyclohex-3-en-1-ol

- (2)  $CH_3CH_2$  C=C  $CH_2OH$  : 4-Chloro-3-methylpent-3-en-5-ol
- (3) H<sub>3</sub>C CH CI H : 4-Chlorobut-3-en-2-ol
- (4) : Cyclohex-2-en-1-ol



- (2) Stereoisomers
- (3) Functional isomers (4) Position isomers
- 61. In which of the following, product will be racemic mixture?

(3) 
$$H_{\frac{\text{Ni-H}_2}{(\text{Raney nickel})}}$$



Identify the compound B.

CH<sub>3</sub>



$$63. \quad \overbrace{ \underbrace{ \text{(i) O}_{3} \text{ (2 equivalents)} }}^{\text{(ii) O}_{3} \text{ (2 equivalents)}} X \xrightarrow{\text{KMnO}_{4}} Y \xrightarrow{\Delta} Z \text{(major)}$$

Z is

- (1) CH<sub>3</sub>CHO
- (2) CH<sub>3</sub>COOH
- (3) C<sub>2</sub>H<sub>5</sub>CHO
- (4) C<sub>2</sub>H<sub>5</sub>COOH

- the Identify chemical reaction which tert-butylmethylether is formed as the major product.
  - (1)  $CH_3O^-Na^+ + (CH_3)_3C Br \xrightarrow{Dry \text{ ether}}$
  - (2)  $(CH_3)_2CH O^-K^+ + CH_3 Br Dry ether$
  - (3)  $(CH_3)_3C-O^-K^++H_3C-Br-\frac{Dry \text{ ether}}{}$
  - (4)  $CH_3CH_2 O^-Na^+ + (CH_3)_2CH Br \xrightarrow{Dry \text{ ether}}$
- 65. Identify the most stable carbocation involved in following conversion

$$\begin{array}{c|cccc} OH & OH & O & CH_3 \\ I & I & I & I \\ H_3C - C - C - CH_3 \xrightarrow{H^+} H_3C - C - C - CH_3 + H_2O \\ I & I & I \\ CH_3 & CH_3 & CH_3 \end{array}$$

Which of the following will not form in the above reaction?

- Given reaction,  $C_2H_5Br + NaOH \rightarrow C_2H_5OH +$ 67. NaBr is called
  - (1) Electrophilic substitution
  - (2) Nucleophilic substitution
  - (3) Electrophilic addition
  - (4) Nucleophilic addition
- 68. How many isomers of C<sub>5</sub>H<sub>11</sub>OH will be primary alcohol? (excluding stereoisomers)
  - (1) 2

(2) 3

(3) 4

- (4) 5
- 69. HI reacts fastest with
  - (1) 2-methyl propan-2-ol
  - (2) Propan-2-ol
  - (3) Propan-1-ol
  - (4) 2-methyl propan-1-ol

70. The compound which will react with aqueous KOH at fastest rate is



71. Which among the following compounds is most easily dehydrated in acidic medium?









72. Consider the following reaction

## Product P is

73. When anisole is treated with one equivalent HI, the products formed are

(1) 
$$OH$$
 and  $CH_3OH$  (2)  $OH$  and  $CH_3OH$  (3)  $OH$  and  $CH_3OH$  and  $CH_3OH$ 

74. Which among the following compounds does not liberate hydrogen gas on reaction with sodium?





(3) OH



- 75. The compound which will give iodoform test is
  - (1) Methanol
- (2) Ethanol
- (3) Propan-1-ol
- (4) 2-methylpropan-2-ol
- 76. The incorrect statement for methoxymethane (X) and ethanol (Y) is
  - (1) X and Y are functional isomers
  - (2) X and Y have same boiling point
  - (3) X is polar aprotic solvent
  - (4) Y shows intermolecular H-bonding
- 77. Benzenediazonium chloride on warming with water gives





- 78. Fermentation of glucose in presence of Zymase gives
  - (1) CH<sub>3</sub>OH
- (2) CH<sub>3</sub>OCH<sub>3</sub>
- (3) CH<sub>3</sub>COOH
- (4) CH<sub>3</sub>CH<sub>2</sub>OH
- 79. The decreasing order of boiling point of the following compounds is
  - (I) Butan-1-ol
  - (II) Tert-butyl alcohol
  - (III) Diethyl ether
  - (1) | | | > | > | | |
- (2) | 1 > | 1 | > 1 |
- (3) | 1 > | 1 > | 1|
- (4) | || > | > ||
- 80. Glycerol reacts with KHSO<sub>4</sub> to produce
  - (1) Dihydroxy glycerine
  - (2) Acrolein
  - (3) Glyceraldehyde
  - (4) Formic acid

81. 
$$O \longrightarrow H_2SO_4 \longrightarrow Product(s)$$
, Major product

is

- 82. Phenol on reaction with CCl<sub>4</sub> in presence of NaOH will produce
  - (1) Picric acid
- (2) Salicylaldehyde
- (3) Salicylic acid
- (4) Benzoic acid

83. 
$$O_2N$$
 OH OH OH
 $NO_2$  (A) (B) (C)

The order of the C–O bond lengths among these compounds is

(1) 
$$(A) > (B) > (C)$$

(2) 
$$(C) > (B) > (A)$$

(3) 
$$(B) > (A) > (C)$$

(4) 
$$(C) > (A) > (B)$$

A and B respectively are

85. The products formed in the reaction are

$$C_6H_5 - C - OH + CH_3^{18}OH \xrightarrow{H_2SO_4}$$

(1) 
$$C_6H_5 - C - OCH_3$$
 and  $H_2O$ 

(2) 
$$C_6H_5 - C - OCH_3$$
 and  $H_2O$ 

(3) 
$$C_6H_5 - C - CH_2OH$$
 and  $H_2O$ 

(4) C<sub>6</sub>H<sub>5</sub>OCH<sub>3</sub>, CO and H<sub>2</sub>O

## **SECTION-B**

86. In the reaction

The electrophile involved is

- (1) CO<sub>2</sub>
- (2) CO
- (3) H+
- (4) COOH
- 87. The heating of benzyl methyl ether with HI produces majorly
  - (1) Benzyl iodide and methanol
  - (2) Benzyl alcohol and iodomethane
  - (3) Benzyl alcohol and methanol
  - (4) Benzyl iodide and methane
- 88. In a given reaction

Which of the following is correct option about (A)?

- (1) (A) contains 5 membered ring
- (2) (A) does not show tautomerism
- (3) (A) is carboxylic acid
- (4) (A) is an aromatic compound

Consider the reactions.

$$\text{a. CH}_{3}\text{-CH=CH}_{2} \xrightarrow{\text{(i) BH}_{3}/\text{THF}} \text{A} \xrightarrow{\text{PCC}} \text{(in CH}_{2}\text{Cl}_{2}) \rightarrow \text{E}$$

b.  $CH_3$  – CH =  $CH_2$   $\xrightarrow{\text{(i) Hg (OAc)}_2}$  C –

Product B and D are related as

- (1) Functional isomers (2) Positional isomers
- (3) Chain isomers
- (4) Metamers
- 90. Ethanol with acetic anhydride gives
  - (1) Methyl acetate
- (2) Methyl propionate
- (3) Ethyl propionate
- (4) Ethyl acetate
- 91. Which among the following alcohols will give red colour in Victor Meyer test?
  - (1) (CH<sub>3</sub>)<sub>2</sub>CHOH
- (2) (CH<sub>3</sub>)<sub>3</sub>COH
- (3) C<sub>6</sub>H<sub>5</sub>OH
- (4) CH<sub>3</sub>CH<sub>2</sub>OH
- 92. Which of the following compounds reacts with sodium bicarbonate?
  - (1) Phenol
- (2) Ethanol
- (3) Acetylene
- (4) Picric acid
- 93. The reaction of Lucas reagent is fastest with
  - (1) CH<sub>3</sub>—OH
- (2) CH<sub>3</sub>CH<sub>2</sub>OH
- (3) (CH<sub>3</sub>)<sub>2</sub>CHOH
- (4) (CH<sub>3</sub>)<sub>3</sub>COH
- 94. The order of reactivity of following alcohols with acetic acid in the presence of H+ ion towards ester formation is

- (1) (ii) > (i) > (iii)
- (2) (ii) > (iii) > (i)
- (3) (iii) > (ii) > (i)
- (4) (i) > (iii) > (ii)
- 95. The correct IUPAC name of the following H<sub>3</sub>C, ,CH₃



- (1) 1-Ethoxy-2,2-dimethylcyclohexane
- (2) 2-Ethoxy-1,1-dimethylcyclohexane
- (3) 1-Ethoxy-6,6-dimethylcyclohexane
- (4) 6-Ethoxy-1,1-dimethylcyclohexane

- 96. All of the following are correct/valid for ethers, except
  - (1) They generally have low boiling points
  - (2) They are less soluble in water
  - (3) The R-O-R bond angle in ethers is large (>110°)
  - (4) Solubility of ethers in water increases with increase in molar mass
- 97. Neutral FeCl<sub>3</sub> gives purple colour with
  - (1) CH<sub>3</sub>OH
- (2) CH<sub>3</sub>CH<sub>2</sub>OH

- 98. Consider the reaction

$$CH_3(CH_2)_8CH_2OH \xrightarrow{CrO_3-H_2SO_4} A$$

A is

- (1) CH<sub>3</sub>(CH<sub>2</sub>)<sub>8</sub>CHO
- (2) CH<sub>3</sub>(CH<sub>2</sub>)<sub>8</sub>COOH
- (3) CH<sub>3</sub>CO(CH<sub>2</sub>)<sub>7</sub>CH<sub>3</sub> (4) HOOC(CH<sub>2</sub>)<sub>8</sub>COOH
- 99. Which of the following is not the possible product

of dehydration of in acidic medium?





100. Consider the following reaction sequence

Propan - 1 - ol 
$$\xrightarrow{SOCl_2}$$
  $X \xrightarrow{ala, KOH}$   $\Delta$   
 $Y \xrightarrow{(i)} B_2H_1/THF \rightarrow Z(Major)$ 

product Z is

- (1) CH<sub>3</sub>CH<sub>2</sub>COOH
- (2) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- (3) CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>
- (4) CH<sub>3</sub>CH(OH)CH<sub>3</sub>

## **BOTANY**

### **SECTION-A**

- 101. Due to non-disjunction, an extra copy of a chromosome is observed in an individual. It is
  - (1) Monosomy
- (2) Nullisomy
- (3) Trisomy
- (4) Tetrasomy
- 102. Sickle cell anaemia
  - a. Is an example of transversion mutation.
  - b. Is caused by mutation of the gene which synthesise the  $\beta$  chain of haemoglobin.
  - c. Involves replacement of amino acid valine by glutamic acid.

### The correct ones are

- (1) All a, b and c
- (2) a and c
- (3) a and b
- (4) b and c
- 103. Identify the disorder on the basis of given features of a male
  - a. Development of breast
  - b. Small testes
  - c. Sterility
  - d. Feminine piched voice
  - (1) Turner's syndrome
  - (2) Haemophilia
  - (3) Klinefelter's syndrome
  - (4) Myotonic dystrophy
- 104. A woman with normal vision marries a man who is colourblind. If their son is with normal vision then what percentage of their daughter will be colourblind?
  - (1) 100%
- (2) 0%
- (3) 75%
- (4) 25%
- 105. Which one is a physical mutagen?
  - (1) Nitrous acid
- (2) Acridine
- (3) X-rays
- (4) 5-Bromouracil
- 106. Mendel experimented on garden pea for
  - (1) Six years
- (2) Fourteen years
- (3) Ten years
- (4) Seven years

- 107. In which of the following organisms, sperm will decide the sex of progenies?
  - (1) Drosophila
- (2) Birds
- (3) Moths
- (4) Butterfly
- 108. Chromosome complement of an individual inflicted with Klinefelter's syndrome is
  - (1) 45 + XY
- (2) 44 + XXY
- (3) 44 + XO
- (4) 45 + XO
- 109. Graphical representation to calculate the probability of all possible genotypes of offsprings in a genetic cross was given by
  - (1) R.C. Punnett
- (2) G.J. Mendel
- (3) Bateson
- (4) Johannsen
- 110. In grasshopper, the male sex in progeny is decided by
  - (1) Ova with (A + X) genotype
  - (2) Sperm with (A + X) genotype
  - (3) Sperm with (A + O) genotype
  - (4) Sperm with (A + Z) genotype
- 111. Mark the incorrect pair
  - (1) Sickle cell
- Autosomal recessive
- anaemia
- trait
- (2) Colourblindness X-linked recessive trait
- (3) Phenylketonuria Autosomal recessive
  - trait
- (4) Thalassemia
- Shows criss-cross
  - inheritance
- 112. Most frequent skin colour seen in a human population is
  - (1) Dark
  - (2) Fairly light
  - (3) Very light
  - (4) Intermediate skin colour

- 113. Trisomy cannot be associated with
  - (1) Increase in number of chromosomes
  - (2) Non-disjunction of chromosomes
  - (3) Triple fusion
  - (4) Aneuploidy
- 114. What percentage of offsprings would have genotype AabbCcDd if parents are AaBbccDd and AAbbCcDD?
  - (1) 25

- (2) 6.25
- (3) 12.5
- (4) 0.625
- 115. Term recombination was proposed by
  - (1) Morgan
- (2) Sturtevant
- (3) Mendel
- (4) Hugo de Vries
- 116. A classical example of point mutation in human is
  - (1) Colourblindness
- (2) Sickle cell anaemia
- (3) Phenylketonuria
- (4) Haemophilia
- 117. Total number of different phenotypes in F<sub>2</sub> generation in a typical Mendelian dihybrid cross is
  - (1) 8

(2) 16

(3) 3

- (4) 4
- 118. Select the **wrong** statement regarding mutations.
  - (1) Frame-shift mutation may be due to deletion or insertion of one or more bases in a nucleotide chain
  - (2) When a purine base is substituted by another purine base then it is transition mutation
  - (3) Transfer of gene segment during crossing over between homologous chromosome results in chromosomal aberration
  - (4) Many chemical and physical factors can be mutagens
- 119. In human beings, which of the following disorders occur due to the dominant allele?
  - (1) Sickle cell anaemia (2) Cystic fibrosis
  - (3) Myotonic dystrophy (4) Haemophilia
- 120. Which of the following traits is expressed only in homozygous condition in pea plant?
  - (1) Tall height
  - (2) Violet flower
  - (3) Green pod
  - (4) Terminal flower position

- 121. One of the reasons for adopting garden pea for experiment by Mendel was
  - (1) Flowers show cross pollination naturally
  - (2) It is a leguminous plant
  - (3) It is a dicot plant
  - (4) It has many distinct alternative traits
- 122. Study the given pedigree chart and select the statement which is true for this family.



- (1) The trait is X-linked recessive
- (2) All the unaffected individuals in generation Q are heterozygous for that trait
- (3) This pedigree chart can explain inheritance of myotonic dystrophy
- (4) The trait in this pedigree chart is Y-linked
- 123. How many different types of gametes will be produced by the organism with genotype PpQQrrssTt?
  - (1) 8

(2) 4

(3) 32

- (4) 9
- 124. Term 'X-body' was given by
  - (1) Henking
- (2) Stevens
- (3) Carl Correns
- (4) A.H. Sturtevant
- 125. Select the option in which the combination will result Turner's Syndrome
  - (1) Egg  $(22 + 0) \times \text{sperm} (22 + 0)$
  - (2) Egg  $(21 + X) \times \text{sperm} (22 + Y)$
  - (3) Egg  $(22 + XX) \times \text{sperm} (22 + 0)$
  - (4) Egg  $(22 + X) \times \text{sperm} (22 + 0)$
- 126. Some feature of *Drosophila* are given below
  - (a) Males are smaller than females
  - (b) It has a short life cycle
  - (c) It has smaller number of morphologically distinct chromosomes
  - (d) It is found over ripe fruits.

Which features are considered suitable for experimental genetics?

- (1) (a), (c) and (d)
- (2) (b) and (c)
- (3) (b), (c) and (d)
- (4) (a) and (c)

- 127. In honey bee males are
  - (1) Diploid
  - (2) Infertile
  - (3) Parthenogenetically produced
  - (4) Produced by worker bees
- 128. In garden pea, gene controlling starch synthesis is related to all of the given phenomenon, **except** 
  - (1) Pleiotropy
  - (2) Incomplete dominance
  - (3) Codominance
  - (4) Complete dominance
- 129. Which one is a test cross?
  - (1) TT x TT
- (2) tt x tt
- (3) Tt x TT
- (4) Tt x tt
- 130. Mark the statement **incorrect** for chromosomal theory of inheritance.
  - Both chromosomes and genes retain their number and individuality throughout the life of an organism
  - (2) Chromosomes are carriers of Mendelian factors which segregate and assort independently during meiosis
  - (3) The two alleles of a gene pair are located on homologous sites of non-homologous chromosomes
  - (4) A gamete carries only one chromosome of a type and one of two alleles of a gene
- 131. A woman has AB blood group. She marries to a man with blood group B whose mother had blood group O. Calculate the probability of their child to be with blood group AB.
  - (1)  $\frac{1}{2}$

(2)  $\frac{1}{4}$ 

(3)  $\frac{1}{8}$ 

- (4)  $\frac{1}{16}$
- 132. Which of the following symptoms is **not** in a person suffering with Down's syndrome?
  - (1) Furrowed tongue
  - (2) Short stature
  - (3) Palm crease
  - (4) Gynaecomastia

- 133. Genes responsible for eye and body colour in *Drosophila* are present on
  - (1) Two different autosomes
  - (2) The same chromosome
  - (3) An autosome and a X-chromosome respectively
  - (4) Both X and Y-chromosomes
- 134. Butterfly is different from grasshopper as each somatic cell of the former has
  - (1) Only one sex chromosome in male individual
  - (2) Two sex chromosomes in female individual
  - (3) Only one sex chromosome in female individual
  - (4) Only autosomes in male individual
- 135. Which one of the following Mendelian disorders is concerned with below given pedigree chart?



- (1) Colour blindness
- (2) Haemophilia
- (3) Cystic fibrosis
- (4) Myotonic dystrophy

## **SECTION-B**

- 136. Select the odd one w.r.t. dominant traits of pea.
  - (1) Green pod colour
  - (2) Green seed colour
  - (3) Inflated pod shape
  - (4) Round seed shape
- 137. How many true-breeding pea plant varieties were selected by Mendel?
  - (1) 7

(2) 36

(3) 14

- (4) 24
- 138. In a dihybrid cross of Mendel's experiment, what will be the proportion of plants which are homozygous only for one trait in F<sub>2</sub> generation?
  - (1) 1/4
- (2) 1/2
- (3) 1/16
- (4) 1/8

- 139. According to the concept of dominance, the modified allele is equivalent to the unmodified allele when
  - (1) It produces normal enzyme
  - (2) It produces the same phenotype
  - (3) It produces non-functional enzyme
  - (4) Both (1) and (2)
- 140. Mark the **odd** one w.r.t. pleiotropy.
  - (1) It is due to effect of the gene on two or more inter-related metabolic pathways
  - (2) In humans, its example is phenylketonuria
  - (3) It occurs in human beings only
  - (4) Pleiotropic gene affects several characters simultaneously
- 141. Select the **incorrect** statement w.r.t incomplete dominance.
  - (1) Genotypic and phenotypic ratios are the same in F2 generation
  - (2) Test cross can produce two phenotypes
  - (3) Phenotype of F<sub>1</sub> hybrid resembles both the parents
  - (4) Flower colour in Antirrhinum majus is the example of this phenomenon
- 142. Choose the example of codominance
  - (1) Phenylketonuria
  - (2) Flower colour in 4O' clock plant
  - (3) AB blood group in human
  - (4) Skin colour in human
- 143. Which of the given crosses will produce maximum possible phenotypes in offsprings?
  - (1) AABb x aabb
- (2) AABB x aabb
- (3) AaBb x aabb
- (4) AaBB x aabb
- 144. Which of the following can express themselves in both F<sub>1</sub> and F<sub>2</sub> generation in a monohybrid cross?
  - (1) Green seeds
- (2) Violet flower colour
- (3) Terminal flowers
- (4) Yellow pods
- 145. Relationship between Mendelian factors and chromosomes was found by
  - (1) Sutton and Boveri
  - (2) Morgan and Sturtevant
  - (3) Bateson and Punnett
  - (4) Johannsen

- 146. Proportion of recombinant phenotypes in F<sub>2</sub> generation in Mendelian dihybrid cross is

16

- (4)
- 147. In Mendel's hybridization experiment, Rr × rr gives rise to the progeny in the genotypic ratio of
  - (1) 2:1
- (2) 1:1
- (3) 3:1
- (4) 1:2:1
- 148. In the following statements

Statement-A: Dominance is not an autonomous feature of gene

Statement-B: Mendelian dihybrid test cross will have same genotypic and phenotypic ratio

- (1) Statement A is incorrect
- (2) Statement B is incorrect
- (3) Statements A and B both are correct
- (4) Statements A and B both are incorrect
- 149. When a cross is made between red flowered and flowered snapdragon plants, percentage of offsprings having pink and white flowers respectively in F2 generation will be
  - (1) 25% and 50%
- (2) 50% and 25%
- (3) 50% and 0%
- (4) 25% and 0%
- 150. Match the column I with column II and choose the correct option.

#### Column I Column II

- a. Alleles (i) A single gene exhibiting more than one phenotypic expression.
- Genes b.
- (ii) The units of inheritance
- Pleiotropy c.
  - (iii) Forms of a gene which codes for a pair of contrasting traits.
- Multiple Presence of more than d. allelism two alleles for a gene
- (1) a(iii), b(ii), c(i), d(iv) (2) a(iii), b(ii), c(iv), d(i)
- (3) a(ii), b(iii), c(i), d(iv) (4) a(ii), b(iii), c(iv), d(i)

## **ZOOLOGY**

### **SECTION-A**

- 151. Which of the following statements is 'incorrect' about 'Saheli'?
  - (1) It is once a week pill
  - (2) It is non-steroidal preparation
  - (3) It checks ovulation
  - (4) Its chemical compound is centchroman
- 152. If a person is suffering from male infertility due to very few sperms in the ejaculate, the technique adopted for assistance in reproduction is
  - (1) ZIFT
- (2) GIFT

(3) AI

- (4) IVF
- 153. Medical termination of pregnancy is considered safe up to how many weeks of pregnancy?
  - (1) 6 weeks
- (2) 12 weeks
- (3) 20 weeks
- (4) 8 weeks
- 154. The most effective contraceptive method in males is
  - (1) IUDs
  - (2) Oral contraceptive pills
  - (3) Vasectomy
  - (4) Periodic abstinence
- 155. Contraceptive method that is generally advised for the females as a terminal method to prevent any more pregnancies is
  - (1) Vasectomy
- (2) Tubectomy
- (3) Oophorectomy
- (4) Hysterectomy
- 156. IUD is an effective and popular contraceptive method. Select the option which is an example of non-medicated IUD?
  - (1) LNG-20
- (2) Lippes loop
- (3) Multiload 375
- (4) Cu7
- 157. Amniocentesis is the insertion of a needle through the abdominal and uterine walls into the amniotic cavity to withdraw fluid for the examination of certain defects. Which of the following cannot be diagnosed by this method?
  - (1) Turner's syndrome (2) Cleft lip
  - (3) Klinefelter syndrome (4) Cystic fibrosis

- 158. In which method of contraception, does the couple abstain from coitus during fertile period
  - (1) IUDs
  - (2) Coitus interruptus
  - (3) Periodic abstinence
  - (4) Lactational amenorrhea
- contraceptive pills generally combination of two hormones. Which of the following factors are affected by them?
  - a. Secretion of gonadotropins
  - b. Follicular development and ovulation
  - c. Quality of cervical mucus

## Select the correct option.

- (1) a only
- (2) a and b only
- (3) b and c only
- (4) a, b and c
- 160. Select the hormone releasing IUDs.
  - (1) CuT
- (2) Cu7
- (3) Progestasert
- (4) Multiload 375
- 161. Voluntary termination of pregnancy
  - (1) Is relatively unsafe before first trimester than after 2<sup>nd</sup> trimester
  - (2) Is to get rid of unwanted pregnancies due to unprotected intercourse.
  - (3) Is always surgical and is effective only within 72 hours of coitus
  - (4) Requires confirmation by two qualified registered medical practitioner before three months
- 162. Match the following and choose the correct option.

| option. |                  |         |                                                                             |  |  |  |  |  |  |  |  |
|---------|------------------|---------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|         | Column-I         |         | Column-II                                                                   |  |  |  |  |  |  |  |  |
| a.      | ZIFT             | (i)     | Transferring of ovum and sperm into oviduct of female                       |  |  |  |  |  |  |  |  |
| b.      | IUT              | (ii)    | Early embryo (up to<br>8-blastomeres) is transferred<br>into fallopian tube |  |  |  |  |  |  |  |  |
| C.      | GIFT             | (iii)   | Embryo with more than eight blastomeres is transferred into uterus          |  |  |  |  |  |  |  |  |
| d.      | ICSI             | (iv)    | Sperm directly injected into the ovum                                       |  |  |  |  |  |  |  |  |
| (1)     | a(ii), b(iii), d | c(i), c | d(iv) (2) a(iv), b(iii), c(ii), d(i)                                        |  |  |  |  |  |  |  |  |

(3) a(ii), b(i), c(iii), d(iv) (4) a(iii), b(i), c(iv), d(ii)

- 163. Which one is **not** applicable for Multiload 375?
  - (1) Suppresses sperm motility
  - (2) Promotes phagocytosis of sperms within uterus
  - (3) Copper ions reduce the fertilizing capacity of sperms
  - (4) Inhibits ovulation
- 164. Select the incorrect statement.
  - Infertility is a condition in which female is unable to conceive even after two years of unprotected sexual cohabitation
  - (2)  $\frac{1}{5}$  of all pregnancies *i.e.* 45–50 million pregnancies are aborted per year all over the world
  - (3) Trichomoniasis is a fungal STI
  - (4) In IVF-ET, embryo upto 8-celled stage is transferred into fallopian tube
- 165. Factor which did not contribute to increase in population size of India during last few decades is
  - (1) Decline in death rate
  - (2) Increase in maternal mortality rate (MMR)
  - (3) Decline in infant mortality rate (IMR)
  - (4) Increase in number of people in reproducible group
- 166. Select the **mismatch** w.r.t. function of contraceptives.
  - (1) Oral contraceptive Prevent ovulation pills
  - (2) Barrier methods Prevent physical meeting of gametes
  - (3) Lactational Prevents lactation amenorrhoea
  - (4) Vasectomy Prevents gamete transport
- 167. In-vitro fertilization and ET is a technique that involves transfer of which one of the following into the fallopian tube?
  - (1) Only embryo up to eight-celled stage
  - (2) Zygote or early embryo up to eight celled stage
  - (3) Only zygote
  - (4) Only embryo more than 32 celled stage

- 168. Action of which hormone is blocked by the use of mifepristone?
  - (1) hCG
- (2) Progesterone
- (3) FSH
- (4) LH
- 169. All of the following STIs are curable if detected early and treated properly, **except** 
  - (1) Genital warts
- (2) Chlamydia
- (3) Chancroid
- (4) Genital herpes
- 170. Choose the **correct** match.
  - (1) Syphilis Haemophilus ducrei
  - (2) Genital warts Treponema pallidum
  - (3) AIDS Human Papilloma Virus
  - (4) Malaria Plasmodium vivax
- 171. In case of a female who suffers from anovulation but has normal physiological conditions suitable for carrying out fertilization and embryonic development; the preferred ART should be
  - (1) ZIFT
- (2) GIFT
- (3) ET
- (4) ICSI
- 172. Lactational amenorrhoea is due to the high level of
  - (1) Follicle stimulating hormone
  - (2) Luteinizing hormone
  - (3) Prolactin
  - (4) Progesterone
- 173. Syphilis, a bacterial STI, is
  - (1) Preventable by using non-medicated IUDs
  - (2) Communicable from an infected mother to the developing foetus across the placenta
  - (3) Characterized by painful chancres on external genitals which have necrotic basis
  - (4) Incurable at all stages in an affected human
- 174. Steroidal oral contraceptive pills are consumed by females
  - (1) Only on the day of ovulation
  - (2) Continuously for 21 days starting within 1st five days of menstruation
  - (3) Only during follicular phase of menstrual cycle
  - (4) Once a week for first 4 months

| 175. | In  | an   | ART,     | the   | ova   | colle   | cted  | from  | а    | donor   | is |
|------|-----|------|----------|-------|-------|---------|-------|-------|------|---------|----|
|      | tra | nsfe | erred ii | nto t | he fa | llopiar | n tub | e. Th | is t | echniq  | ue |
|      | is  | Х    | and      | the   | ferti | lisatio | n is  | then  | tak  | ing pla | се |
|      | ,   | Y .  |          |       |       |         |       |       |      |         |    |

Choose the **correct** option w.r.t. 'X' and 'Y'

#### Υ X (1) ZIFT; in vitro (2) IUT; in vitro (3) AI; in vivo (4) GIFT; in vivo

- 176. Which of the following oral contraceptive pill is progesterone only pill?
  - (1) Mala D
- (2) Saheli
- (3) POPs
- (4) Orthonovum
- 177. Which of the following statement is wrong about test tube baby?
  - (1) Fusion of sperm and ovum is done outside the body of female
  - (2) The zygote or early embryo up to eight blastomeres is transferred into the fallopian tube
  - (3) The embryo more than eight blastomeres is transferred into the uterus
  - (4) Gamete Intra Fallopian Transfer is one of the method included in this programme
- 178. Select the correct pair among the following given options w.r.t. methods of contraception.
  - (1) Natural methods Periodic abstinence, coitus interruptus
  - (2) Barrier methods Multiload 375, vault
  - (3) Intra uterine device -Implants, Lippes' loop
  - (4) Sterilization Castration, methods vasectomy
- A alone or in combination with B used by females as injections or small silicon devices under the skin as effective contraceptives. Choose the option that fill the blanks correctly.
  - (1) A-FSH, B-LH
  - A-Estrogen, B-LH
  - (3) A-Progestogen, B-Estrogen
  - (4) A-LH, B-Inhibin

- 180. If vas deferens of both sides are cut and ligated in a mature human male, then all of the following may be observed except
  - (1) Continuation of male sex hormone secretion
  - (2) Semen is without sperms
  - (3) Transport of sperms to ejaculatory duct is blocked
  - (4) Increase in sperm count
- 181. Though all persons are vulnerable to STIs but their incidences are reported to be very high among persons of age group
  - (1) 40-50 years
- (2) 15-24 years
- (3) 35-40 years
- (4) 5-10 years
- 182. According to 2011 census report, the population growth rate in India was \_\_\_\_\_ percent.
  - (1) More than 3
- (2) More than 6
- (3) Less than 2
- (4) More than 4
- 183. Which of the following is possibly the most widely accepted method of contraception in India?
  - (1) IUDs
- (2) Femidoms
- (3) Coitus interruptus
- (4) Rhythm method
- 184. Among the given contraceptives, which one has minimum average failure rate?
  - (1) Calendar method
- (2) Barrier method
- (3) Withdrawal method (4) Oral contraceptive
- 185. A correct statement regarding the type of birth control called implant
  - (1) Allows ovulation but does allow not fertilisation
  - (2) Makes cervical mucus thin in consistency
  - (3) Effective only for short duration i.e., few months
  - (4) Retards entry of sperms in female genital tract

### **SECTION-B**

- 186. The family planning programme in India was initiated in year
  - (1) 1972
  - (2) 1951
  - (3) 1964
  - (4) 1981

- 187. Population growth can be controlled by all except
  - Encouraging couples to use contraceptive methods
  - (2) Giving incentives to couples with smaller families
  - (3) Raising the marriageable age of males and females
  - (4) Promoting unprotected sexual co-habitation
- 188. Read the given statements and select the correct option.

**Statement-A:** As long as the mother breast feeds the child fully, chances of conception are almost nil but this is effective only upto six months following parturition.

**Statement-B**: Natural methods of contraception work on the principle of non-formation of gametes.

- (1) Both statements A and B are correct
- (2) Both statements A and B are incorrect
- (3) Only statement A is correct
- (4) Only statement B is correct
- 189. Which of the following is not used effectively as emergency contraception after coitus?
  - (1) IUDs
  - (2) Only progestogen pills
  - (3) Combined pills
  - (4) Only estrogen pills
- 190. How many of the contraceptives given in the box below does not require expert/nurse intervention for their use or placement?

Norplant, Injections, Femidom, Nirodh, Foams

- (1) Two
- (2) Three
- (3) Five
- (4) Four
- 191. Which one of the following groups include all venereal diseases?
  - (1) AIDS, Genital warts, Cholera
  - (2) HIV, Malaria, Chlamydiasis
  - (3) Gonorrhoea, AIDS, Chlamydiasis
  - (4) Haemophilia, Hepatitis, AIDS

- 192. Select the incorrect match.
  - (1) RTIs Reproductive tract infections
  - (2) ART Assisted reproductive technologies
  - (3) PID Pelvic inflammatory diseases
  - (4) RCH Regional child health care
- 193. Condoms are not
  - (1) Easy to use
  - (2) Reusable
  - (3) Made up of thin rubber
  - (4) Available for females
- 194. Hormonal intra uterine device does not suppress
  - (1) Implantation of blastocyst
  - (2) Sperm motility through cervix
  - (3) Fertilising capacity of sperms
  - (4) Spermatogenesis
- 195. When did the medical termination of pregnancy act in India got legalised?
  - (1) 1984
- (2) 1951
- (3) 2002
- (4) 1971
- 196. Opinion of how many registered medical practitioners are required for MTP, if the pregnancy has lasted more than 12 weeks, but fewer than 24 weeks?
  - (1) One
- (2) Three
- (3) Two
- (4) Four
- 197. All of the following contraceptive methods inhibit ovulation except
  - (1) Saheli
- (2) Norplant
- (3) Mala-D
- (4) Injectable
- 198. If a female menstrual cycle is of 40 days, then the fertile period in which a couple should avoid coitus is from
  - (1)  $10^{th} 17^{th}$  day
- (2) 22<sup>nd</sup> 29<sup>th</sup> day
- (3)  $40^{th} 47^{th}$  day
- (4)  $30^{th} 37^{th}$  day
- 199. The technique that involves fertilisation of egg outside the female body, followed by its insertion into oviduct is
  - (1) GIFT
- (2) ZIFT

(3) AI

- (4) IUI
- 200. Which of the following is used as male contraceptive?
  - (1) Diaphragm
- (2) Vault
- (3) Lippes' loop
- (4) Nirodh